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Preface

It should be noted that children’s games are
not merely games. One should regard them
as their most serious activities.

Michel Eyquem de Montaigne

Herein we study games of pure strategy, in which there are only two players1

who alternate moves, without using dice, cards, or other random devices, and

where the players have perfect information about the current state of the game.

Familiar games of this type include tic tac toe, dots & boxes, checkers,

and chess. Obviously, card games such as gin rummy and dice games such

as backgammon are not of this type. The game of battleship has alternate

play and no chance elements, but fails to include perfect information — in

fact, that’s rather the point of battleship. The games we study have been

dubbed combinatorial games to distinguish them from the games usually found

under the heading of game theory, which are games that arise in economics and

biology.

For most of history, the mathematical study of these games consisted

largely of separate analyses of extremely simple games. This was true up un-

til the 1930s when the Sprague-Grundy theory provided the beginnings of a

mathematical foundation for a more general study of games. In the 1970s,

the twin tomes On Numbers and Games by Conway and Winning Ways by

Berlekamp, Conway, and Guy established and publicized a complete and deep

theory, which can be deployed to analyze countless games. One cornerstone

of the theory is the notion of a disjunctive sum of games, introduced by John

Conway for normal-play games. This scheme is particularly useful for games

that split naturally into components. On Numbers and Games describes these

mathematical ideas at a sophisticated level. Winning Ways develops these

1In 1972, Conway’s first words to one of the authors, who was an undergraduate at the
time, was “What’s 1 + 1 + 1?” alluding to three-player games. This question has still not
been satisfactorily answered.

xi
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ideas, and many more, through playing games with the aid of many a pun and

witticism. Both books have a tremendous number of ideas, and we acknowledge

our debt to the books and to the authors for their kind words and teachings

throughout our careers.

The goal of our book is less grand in scale than either of the two tomes. We

aim to provide a guide to the evaluation scheme for normal-play, two-player,

finite games. The guide has two threads, the theory and the applications.

The theory is accessible to any student who has a smattering of general

algebra and discrete mathematics. Generally, this means a third-year college

student, but any good high school student should be able to follow the devel-

opment with a little help. We have attempted to be as complete as possible,

though some proofs in the latter chapters have been omitted, because the the-

ory is more complex or is still in the process of being developed. Indeed, in the

last few months of writing the first edition, Conway prevailed on us to change

some notation for a class of all-small games. This uptimal notation turned out

to be very useful, and it makes its debut in this book.

We have liberally laced the theory with examples of actual games, exercises

and problems. One way to understand a game is to have someone explain it

to you; a better way is to think about it while pushing some pieces around;

and the best way is to play it against an opponent. Completely solving a game

is generally hard, so we often present solutions to only some of the positions

that occur within a game. The authors invented more games than they solved

during the writing of this book. While many found their way into the book,

most of these games never made it to the rulesets found at the end. A challenge

for you, the reader of our missive, and as a test of your understanding, is to

create and solve your own games as you progress through the chapters.

Since the first appearance of On Numbers and Games and Winning Ways,

there have been several conferences specifically on combinatorial games. The

subject has moved forward and we present some of these developments. How-

ever, the interested reader will need to read further afield to find the theories

of loopy games, misère-play games, other (non-disjunctive) sums of games,

and the computer science approach to games. The proceedings of these con-

ferences [Guy91, Now96, Now02, AN07, Now15, FN04] would be good places

to start.

Organization of the Book

The main idea of the part of the theory of combinatorial games covered in this

book is that it is possible to assign values to games. These values, which are

not simply numbers, can be used to replace the actual games when deciding

who wins and what the winning strategies might be.
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Each chapter has a prelude that includes problems for the student to use

as a warm-up for the mathematics to be found in the following chapter. The

prelude also contains guidance to the instructor for how one can wisely deviate

from the material covered in the chapter.

Exercises are sprinkled throughout each chapter. These are intended to

reinforce, and check the understanding of, the preceding material. Ideally then,

a student should try every exercise as it is encountered. However, there should

be no shame associated with consulting the solutions to the exercises found at

the back of the book if one or more of them should prove to be intractable. If

that still fails to clear matters up satisfactorily, then it may be time to consult

a games guru.

Chapter 0 introduces basic definitions and loosely defines that portion of

game theory which we address in the book. Chapter 1 covers some general

strategies for playing or analyzing games and is recommended for those who

have not played many games. Others can safely skim the chapter and review

sections on an as-needed basis while reading the body of the work. Chap-

ters 2, 4, and 5 contain the core of the general mathematical theory. Chapter 2

introduces the first main goal of the theory, that being to determine a game’s

outcome class or who should win from any position. Curiously, a great deal

of the structure of some games can be understood solely by looking at out-

come classes. Chapter 3 motivates the direction that the theory takes next.

Chapters 4, 5, and 6 then develop this theory (i.e., assigning values and the

consequences of these values).

Chapters 7, 8, and 9 look at specific parts of the universe of combinatorial

games, and as a result, these are a little more challenging but also more concrete

since they are tied more closely to actual games. Chapter 7 takes an in-depth

look at impartial games. The study of these games pre-dates the full theory.

We place them in the new context and show some of the new classes of games

under present study.

Chapters 8 through 10 provide techniques for identifying and exploiting

the most significant information about a game when a complete analysis might

be complex and therefore unhelpful. Indeed, these are areas that have seen the

most advances of late. Chapter 8 addresses hot games, games such as go and

amazons in which there is a great incentive to move first, while Chapter 9

addresses all-small games, where the value of a move is more subtle. Chap-

ter 10, entitled “Trimming Game Trees,” describes two more recent techniques

for identifying the core features of games, reduced canonical form and ordinal

sums.

Chapter ω is a brief listing of other areas of active research that we could

not fit into an introductory text.

In Appendix A, we present top-down induction, an approach that we use

often in the text. While the student need not read the appendix in its entirety,
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the first few sections will help ground the format and foundation of the inductive

proofs found in the text.

Appendix B is a brief introduction to CGSuite, a powerful programming

toolkit written by Aaron Siegel in Java for performing algebraic manipula-

tions on games. CGSuite is to the combinatorial game theorist what Maple or

Mathematica is to a mathematician or physicist. While the reader need not

use CGSuite while working through the text, the program does help to build

intuition, double-check work done by hand, develop hypotheses, and handle

some of the drudgery of rote calculations.

Appendix D contains the rules to many games, ordered alphabetically. In

particular we include any game that appears multiple times in the text, or is

found in the literature. We do not always state the detailed rules of a game in

the text, so the reader will want to refer to this appendix often.

The supporting website for the book is located at www.lessonsinplay.com.

Look there for links, programs, and addenda, as well as instructions for access-

ing the online solutions manual for instructors.
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Preparation for Chapter 0

Before each chapter are several quick prep problems that areworth
tackling in preparation for reading the chapter.

Prep Problem 0.1. Make a list of all the two-player games you know
of and classify each one according towhether or not it uses elements
of chance (e.g., dice, coin flips, randomly dealt cards) and whether or
not there is hidden information.

Prep Problem 0.2. Locate the textbook website, www.lessonsinplay.
com, and determine whether it might be of use to you.

To the instructor: Before each chapter, we will include a few sug-
gestions to the instructor. Usually these will be examples that do not
appear in the book, but that may be worth covering in lecture. The
student unsatisfied by the text may be equally interested in seeking
out these examples.

We highly recommend that the instructor and the student read Ap-
pendix A on top-down induction. We present induction in a way that
will be unfamiliar tomost, but that leads tomore natural proofs, par-
ticularly those found in combinatorial game theory.

The textbook website, www.lessonsinplay.com, has directions for
how instructors can obtain a solution manual.

http://www.lessonsinplay.com
http://www.lessonsinplay.com
http://www.lessonsinplay.com


Chapter 0

Combinatorial Games

We don’t stop playing because we grow old;
we grow old because we stop playing.

George Bernard Shaw

This book is all about combinatorial games and the mathematical techniques

that can be used to analyze them. One of the reasons for thinking about games

is so that you can play them more skilfully and with greater enjoyment; so

let’s begin with an example called domineering. To play you will need a

chessboard and a set of dominoes. The domino pieces should be big enough to

cover or partially cover two squares of the chessboard but no more. You can

make do with a chessboard and some slips of paper of the right size or even

play with pen or pencil on graph paper (but the problem there is that it will be

hard to undo moves when you make a mistake!). The rules of domineering are

simple. Two players alternately place dominoes on the chessboard. A domino

can only be placed so that it covers two adjacent squares. One player, Louise,

places her dominoes so that they cover vertically adjacent squares. The other

player, Richard, places his dominoes so that they cover horizontally adjacent

squares. The game ends when one of the players is unable to place a domino,

and that player then loses. Here is a sample game on a 4× 6 board with Louise

moving first:

L→ R→ L→

R→ L→ R→ L→

R→ L→ R→ L→

1
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Since Louise placed the last domino, she has won.

Exercise 0.1. Stop reading! Find a friend and play some games of domineer-

ing. A game on a full chessboard can last a while so you might want to play

on a 6× 6 square to start with.

If you did the exercise, then you probably made some observations and

learned a few tactical tricks in domineering. One observation is that after a

number of dominoes have been placed the board falls apart into disconnected

regions of empty squares. When you make a move you need to decide what

region to play in and how. Suppose that you are the vertical player and that

there are two regions of the form:

and

Obviously you could move in either region. However, if you move in the hook-

shaped region, then your opponent will move in the square. You will have no

more moves left so you will lose. If instead you move in the square, then your

opponent’s only remaining move is in the hook. Now you still have a move

in the square to make, and so your opponent will lose. If you are L and your

opponent is R, play should proceed as

L→ R→ L→

This is also why an opening move such as

is good since it reserves the two squares in the upper left for you later. In fact,

if you play seriously for a while it is quite possible that the board after the first

four moves will look something like

Simply put, the aim of combinatorial game theory is to understand in a

more detailed way the principles underlying the sort of observations that we

have just made about domineering. We will learn about games in general

and how to understand them but, as a bonus, how to play them well!
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0.1 Basic Terminology

In this section we will provide an informal introduction to some of the basic

concepts and terminology that will be used in this book and a description of

how combinatorial games differ from some other types of games.

Combinatorial games

In a combinatorial game there are two players who take turns moving alter-

nately. Play continues until the player whose turn it is to move has no legal

moves available. No chance devices such as dice, spinners, or card deals are

involved, and each player is aware of all the details of the game position (or

game state) at all times. The rules of each game we study will ensure that it

must end after a finite sequence of moves, and the winner is often determined

on the basis of who made the last move. In normal play the last player to move

wins. In misère game play the last player loses.

In fact, combinatorial game theory can be used to analyze some games that

do not quite fit the above description. For instance, in dots & boxes, players

may make two (or more) moves in a row. Most checkers positions are loopy

and can lead to infinitely long sequences of moves. In go and chess the last

mover does not determine the winner. Nonetheless, combinatorial game theory

has been applied to analyze positions in each of these games.

By contrast, the classical mathematical theory of games is concerned with

economic games. In such games the players often play simultaneously and

the outcome is determined by a payoff matrix. Each player’s objective is to

guarantee the best possible payoff against any strategy of the opponent. For a

taste of economic game theory, see Problem 5.

The challenge in analyzing economic games stems from simultaneous deci-

sions: each player must decide on a move without knowing the move choice(s)

of her opponent(s). The challenge of combinatorial games stems from the sheer

quantity of possible move sequences available from a given position.

Combinatorial game theory is most straightforward when we restrict our

attention to short games. In the play of a short game, a position may never

be repeated, and there are only a finite number of other positions that can be

reached. We implicitly (and sometimes explicitly) assume all games are short

in this text.

Introducing the players

The two players of a combinatorial game are traditionally called Left (or just L)

and Right (R). Various conventional rules will help you to recognize who is

playing, even without a program:
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Left Right

Louise Richard
Positive Negative
bLack White
bLue Red
Vertical Horizontal
Female Male

Green
Gray

Alice and Bob will also make an appearance when the first player is important

(Alice moves first). To help remember all these conventions, note that despite

the fact that they were introduced as long ago as the early 1980s in Winning

Ways (WW ) [BCG01], the chosen dichotomies reflect a relatively modern “po-

litically correct” viewpoint.

Often we will need a neutral color, particularly in pen and paper games or

games involving pieces. If the game is between blue and red then this neutral

color is green (because green is good for everyone!), while if it is between black

and white then the neutral color is gray (because gray is neither black nor

white!). Because this book is printed in color, games traditionally played in

black and white (and gray) are presented in color instead. That is,

black = blue,

white = red,

gray = green.

Options

If a position in a combinatorial game is given and it happens to be Left’s turn

to move, she will have the opportunity to choose from a certain set of moves

determined by the rules of the game. For instance in domineering, where

Left plays the vertical dominoes, she may place such a domino on any pair

of vertically adjacent empty squares. The positions that arise from exercising

these choices are called the left options of the original position. Similarly, the

right options of a position are those that can arise after a move made by Right.

The options of a position are simply the elements of the union of these two sets.

We can draw a game tree of a position (as a directed tree) by the following

procedure.

• Create a node for the original position, and draw nodes for each of its

options, placing them below the first node. Then draw a directed edge

from the top node to its options.

• For each option, again draw nodes for each of its options, placing them

below and drawing a directed edge to these new nodes.

• Repeat with any subposition that still has unexpanded options.
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The nodes of the game tree correspond to the followers of the original

position and are all the positions that result from any sequence of moves. The

followers include the original position (the empty sequence of moves!) and also

sequences in which players may get several moves in row. It is also possible to

have a position appear in many places of the tree. The game graph is obtained

by merging all the nodes that correspond to a single position, but the game

tree is more important for induction purposes.

As a visual aid, our game trees will have the left options appearing below

and to the left of the game and right options below and to the right. Often,

induction will be based on the options, and we will draw a partial game tree

consisting only of the original position and its options:

Occasionally, we will include some other interesting followers:

It may seem odd that we are showing two consecutive right moves in a game

tree, but much of the theory of combinatorial games is based on analyzing

situations where games decompose into several subgames. It may well be the

case that in some of the subgames of such a decomposition, the players do not

alternate moves.

We saw this already in the domineering “square and hook” example.

Left, if she wants to win, winds up making two moves in a row in the square:

L→ R→ L→
Thus, we show the game tree for a square with Left and/or Right moving twice

in a row:
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As we will see later in Chapter 4, dominated options are often omitted from

the game tree, when an option shown is at least as good:

In some games the left options and the right options of a position are

always the same. Such games are called impartial . The study of impartial

combinatorial games is the oldest part of combinatorial game theory and dates

back to the early twentieth century. On the other hand, the more general

study of non-impartial games was pioneered by John Conway in On Numbers

and Games (ONAG) [Con01] and by Elwyn Berlekamp, John Conway, and

Richard Guy in WW [BCG01]. Since “non-impartial” hardly trips off the

tongue, and “partial” has a rather ambiguous interpretation, it has become

commonplace to refer to non-impartial games as partizan games.

To illustrate the difference between these concepts, consider a variation of

domineering called cram. cram is just like domineering except that each

player can play a domino in either orientation. Thus, it becomes an impartial

game since there is now no distinction between legal moves for one player and

legal moves for the other.

Let’s look at a position in which there are only four remaining vacant

squares in the shape of an L:

In cram the next player to play can force a win by playing a vertical domino

at the bottom of the vertical strip, leaving

which contains only two non-adjacent empty squares and hence allows no fur-

ther moves. In domineering if Left (playing vertically) is the next player,

she can win in exactly this way. However, if Right is the next player his only

legal move is to cover the two horizontally adjacent squares, which still leaves

a move available to Left. So (assuming solid play) Left will win regardless of
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who plays first:

L→ or

R→ L→

Much of the theory that we will discuss is devoted to finding methods to

determine who will win a combinatorial game assuming sensible play by both

sides. In fact, the eventual loser has no really sensible play1 so a winning

strategy in a combinatorial game is one that will guarantee a win for the player

employing it no matter how his or her opponent chooses to play. Of course,

such a strategy is allowed to take into account the choices actually made by

the opponent — to demand a uniform strategy would be far too restrictive!

Problems

1. Consider the position

(a) Draw the complete game trees for both cram and domineering.

The leaves (bottoms) of the tree should all be positions in which nei-

ther player can move. If two left (or right) options are symmetrically

identical, you may omit one.

(b) In the position above, who wins at domineering if Vertical plays

first? Who wins if Horizontal plays first? Who wins at cram?

2. Suppose that you play domineering (or cram) on two 8×8 chessboards.

At your turn you can move on either chessboard (but not both!). Show

that the second player can win.

3. Take the ace through five of one suit from a deck of cards and place

them face up on the table. Play a game with these as follows. Players

alternately pick a card and add it to the right-hand end of a row. If the

row ever contains a sequence of three cards in increasing order of rank

(ace is low), or in decreasing order of rank, then the game ends and the

player who formed that sequence is the winner. Note that the sequence

1Unless he has some ulterior motive not directly related to the game such as trying to
make it last as long as possible so that the bar closes before he has to buy the next round of
drinks.



8 Chapter 0. Combinatorial Games

need not be consecutive either in position or value, so, for instance, if the

play goes 4, 5, 2, 1 then the 4, 2, 1 is a decreasing sequence.

(a) Show that this is a proper combinatorial game (the main issue is to

show that draws are impossible).

(b) Show that the first player can always win.

4. Start with a heap of counters. As a move from a heap of n counters, you

may either:

• assuming n is not a power of 2, remove the largest power of 2 less

than n; or

• assuming n is even, remove half the counters.

Under normal play, who wins? How about misère play?

5. The goal of this problem is to give the reader a taste of what is not

covered in this book. Two players play a 2 × 2 zero-sum matrix game.

(Zero sum means that whatever one person loses, the other gains.) The

players are shown a 2× 2 matrix of positive numbers. Player A chooses a

row of the matrix, and player B simultaneously chooses a column. Their

choice determines one matrix entry, that being the number of dollars B

must pay A. For example, suppose the matrix is(
1 4
3 2

)
.

If player A chooses the first row with probability 1
4 , then no matter what

player B’s strategy is, player A is guaranteed to get an average of $2.50.

If, on the other hand, player B chooses the columns with 50-50 odds, then

no matter what player A does, player B is guaranteed to have to pay an

average of $2.50. Further, neither player can guarantee a better outcome,

and so B should pay player A the fair price of $2.50 to play this game.

In general, if the entries of the matrix game are(
a b
c d

)
,

as a function of a, b, c, and d, what is the fair price that B should pay A

to play? (Your answer will have several cases.)
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Preparation for Chapter 1

Prep Problem 1.1. Play dots & boxes with a friend or classmate.
The rules are found on page 307 of Appendix D. You should start
with a 5 × 6 grid of dots. You should end up with a 4 × 5 grid of 20
boxes, so the game might end in a tie.
When playing a game for the first time, feel free to move quickly to
familiarize yourself with the rules and to get a sense for what can
happen in the game.
After a fewgames ofdots & boxes, write a fewsentences describing
any observations you havemade about the game. Perhaps you found
a juncture in the game when the nature of play changes? Did you
have a strategy? (It need not be a good strategy.)

Prep Problem 1.2. Play snort with a friend or classmate. The rules
are found on page 313 of Appendix D. (Note that if the Winner is not
specified in a ruleset, you should assume normal play, that the last
legal move wins.) You should play on paths of various lengths: for
instance,

Jot down any observations you have about the game, and then try
playing col on the same initial positions.

Prep Problem 1.3. Play clobber with a friend or classmate. The
rules are found on page 305 of Appendix D. You should start with
a 5 × 6 grid of boxes:

Jot down any observation you have about the game.

Prep Problem 1.4. Play nim (rules on page 311) with a friend or
classmate. Begin with the three heap position with heaps of sizes
3, 5, and 7.

To the instructor: While dots & boxes is a popular topic among
students, it also takes quite a bit of time to appreciate. View the topic
as optional. If you do cover it, allow time for students to play practice
games. Another option is to cover it later in the term before a holiday
break.



Chapter 1

Basic Techniques

If an enemy is annoying you by playing well,
consider adopting his strategy.

Chinese proverb

There are some players who seem to be able to play a game well immediately

after learning the rules. Such gamesters have a number of tricks up their sleeves

that work well in many games without much need for further analysis. In this

chapter we will teach you some of these tricks or, to use a less emotive word,

heuristics.

Of course, the most interesting games are those to which none of the heuris-

tics apply directly, but knowing them is still an important part of getting started

with the analysis of more complex games. Often, you will have the opportunity

to consider moves that lead to simple positions in which one or more of the

heuristics apply. Those positions are then easily understood, and the moves

can accordingly be taken or discarded.

1.1 Greedy

The simplest of the heuristic rules or strategies is called the greedy strategy.

A player who is playing a greedy strategy grabs as much as possible whenever

possible. Games that can be won by playing greedily are not terribly interesting

at all — but most games have some aspects of greedy play in them. For

instance, in chess it is almost always correct to capture your opponent’s queen

with a piece of lesser value (taking a greedy view of “getting as much material

advantage as possible”), but not if doing so allows your opponent to capture

your queen, or extra material, or especially not if it sets up a checkmate for the

opponent. Similarly, the basic strategy for drawing in tic tac toe is a greedy

11
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one based on the idea “always threaten to make at least one line, or block any

threat of your opponent.”

Definition 1.1. A player following a greedy strategy always chooses the move

that maximizes or minimizes some quantity related to the game position after

the move has been made.

Naturally, the quantity on which a greedy strategy is based should be easy

enough to calculate that it does not take too long to figure out a move. If players

accumulate a score as they play (where the winner is the one who finishes with

the higher score), then that score is a natural quantity to try to maximize at

each turn.

Does a greedy strategy always work? Of course not, or you wouldn’t have

a book in front of you to read. But in some very simple games it does. In

the game grab the smarties
1 each player can take at his or her move any

number of Smarties from the box, provided that they are all the same color.

Assuming that each player wants to collect as many Smarties as possible, the

greedy strategy is ideal for this sort of game. You just grab all the Smarties

of some color, and the color you choose is the one for which your grab will be

biggest.

Sometimes though, a little subtlety goes a long way.

Example 1.2. Below is the board after the first moves in a very boring game

of dots & boxes:

Suppose that it is now Alice’s turn. No matter where Alice moves, Bob can

take all the squares in that row. If he does so, he then has to move in another

row, and Alice can take all the squares in this row. They trade off in this way

until they both have 27 boxes and the game is tied:

1An American player might play the less tasty variant, grab the m&m’s.
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B B B B B B B B B

A A A A A A A A A

B B B B B B B B B

A A A A A A A A A

B B B B B B B B B

A A A A A A A A A

But Bob is being too greedy. Instead of taking all the squares in the row that

Alice opens up, he should take all but two of them, then make the double-

dealing move, which gives away the last two boxes to Alice. For example, if

Alice moves somewhere toward the left-hand end of the first row, Bob replies

with

B B B B B B B

Alice now has a problem. Regardless of whether she takes the two boxes that

Bob has left for her, she still has to move first in another row. So she might as

well take the last two in a double-cross (since otherwise Bob will get them on

his next turn), but she then has to give seven boxes of some other row to Bob

in his next turn. By repeating this strategy for each but the last row, where

he takes all the boxes, Bob finishes with 5× 7 + 9 = 44 boxes while Alice gets

only 5× 2 = 10 boxes:

B B B B B B B A A

B B B B B B B A A

B B B B B B B A A

B B B B B B B A A

B B B B B B B A A

B B B B B B B B B
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Again, a move that makes two boxes with one stroke is called a double-cross.

(A person who makes such a play might feel double-crossed for having to reply

to a double-dealing move.)

It is not a bad idea to use a greedy strategy on your first attempt at playing

a new game, particularly against an expert. It is easy to play, so you won’t

waste time trying to figure out good moves when you don’t know enough about

the game to do so. And when the expert makes moves that refute your strategy

(i.e., exposes the traps hidden in the greedy strategy), then you can begin to

understand the subtleties of the game.

Exercise 1.3. Now that you have learned a bit of strategy, play dots & boxes

against a friend. (If you did the prep problems for this chapter, you already

played once. Now, you may be able to play better.)

1.2 Symmetry

A famous chess wager goes as follows: An unknown chess player, Jane Pawn-

pusher, offers to play two games, playing the white pieces against Garry Kas-

parov and black against Anatoly Karpov simultaneously. She wagers $1 million

dollars that she can win or draw against one of them. Curiously, she can win

the wager without knowing much about chess. How?

What she does is simply wait for Karpov to make a move (white moves

first in chess), and whatever Karpov does, she makes the same move as her

first move against Kasparov. Once Kasparov replies, she plays Kasparov’s reply

against Karpov. If Kasparov beats her, she will beat Karpov the same way.2

A strategy that maintains a simple symmetry like this is called Tweedledum-

Tweedledee or copycat.

Example 1.4. The Tweedledum-Tweedledee strategy is effective in two-heap

nim. If the two heaps are of the same size, then you should invite your opponent

to move first. She must choose a heap and remove some counters. You choose

the other heap and take away the same number of counters leaving two equal

sized heaps again. On the other hand, if the game begins with two heaps of

different sizes, you should rush to make the first move, taking just enough

counters from the larger heap to make them equal. Thereafter, you adopt the

Tweedledum-Tweedledee approach.

Symmetry is an intuitively obvious strategy. Whenever your opponent does

something on one part of the board, you should mimic this move in another

part. Deciding how this mimicry should happen is the key. To be played

2Readers familiar with cryptography may observe Jane is making a man-in-the-middle
attack.
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successfully, you should not leave a move open to your opponent that allows

him to eliminate your mimicking move.

Example 1.5. If Blue moves from the 3× 4 clobber game

to any of the three positions

, , or

then Red can play the remainder of the game using a 180 degree symmetry

strategy. This establishes that each of these three moves for Blue was a poor

choice on her first turn. In fact, from this position it happens to be the case

that she simply has no good first moves, but the rest of her initial moves cannot

be ruled out so easily due to symmetry.

Sometimes, symmetry can exist that is not apparent in the raw description

of a game.

Example 1.6. Two players take turns putting checkers down on a checkerboard.

One player plays blue, one plays red. A player who completes a 2 × 2 square

with four checkers of one color wins.

This game should end in a draw. First, imagine that most of the checker-

board is tiled with dominoes using a brickwork pattern:

If your opponent plays a checker in a domino, you respond in the same domino.

If you cannot (because you move first, or the domino is already filled, or your

opponent fails to play in a domino), play randomly. Since every 2 × 2 square

contains one complete domino, your opponent cannot win. Therefore, both

players can force at least a draw, and neither one can force a win.

Exercise 1.7. Two players play m× n cram.

(a) If m and n are even, who should win? The first player or the second

player? Explain your answer.

(b) If m is even and n is odd, who should win? Explain.

(When m and n are odd, the game remains interesting.)
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1.3 Parity

Parity is a critical concept in understanding and analyzing combinatorial games.

A number’s parity is whether the number is odd or even. In lots of games, only

the parity of a certain quantity is relevant — the trick is to figure out just

what quantity! With the normal play convention that the last player with a

legal move wins, it is always the objective of the first player to play to ensure

that the game lasts an odd number of moves, while the original second player

is trying to ensure that it lasts an even number of moves.

This is part of the reason why symmetry as we mentioned earlier is also

important — it allows the second player (typically) to think of moves as being

blocked out in pairs, ensuring that he has a response to any move his opponent

might make.

The simplest game for which parity is important is called she loves me

she loves me not. This game is played with a single daisy. The players

alternately remove exactly one petal from the daisy and the last player to

remove a petal wins. Obviously, all that matters is the original parity of the

number of petals on the daisy. If it is odd then the first player will win; if it is

even then the second player will win.

More usually she loves me she loves me not is delivered in some sort

of disguise.

Example 1.8. Take a heap of 29 counters. A move is to choose a heap (at the

start there is only one) and split it into two non-empty heaps. Who wins?

Imagine the counters arranged in a line. A move effectively is to put a

bar between two counters. This corresponds to splitting a heap into two: the

counters to the left and those to the right up to the next bar or end of the row.

There are exactly 28 moves in the game. The game played with a heap of n

counters has exactly n − 1 moves! The winner is the first player if n is even

and the second player if n is odd.

Exercise 1.9. A chocolate bar is scored into smaller squares or rectangles.

(Lindt’s Swiss Classic, for example, is 5×6.) Players take turns picking up one

piece (initially the whole bar), breaking the piece into two along a scored line,

and setting the pieces back down. The player who moves last wins. Our goal

is to determine all winning moves.

1.4 Give Them Enough Rope!

The previous strategies are all explicit, and when they work, you can win the

game. This section is about confounding your opponent in order to gain time

for analysis.
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If you are in a losing position, it pays to follow the Enough Rope Principle:

Make the position as complicated as you can with your next move.3 Hopefully,

your opponent will tie himself up in knots while trying to analyze the situation.

For example, suppose you are Blue and are about to move from the follow-

ing clobber position:

If you are more astute than the authors, you could conclude that you have
no winning moves. However, you should probably not throw in the towel just

yet. But you also should not make any moves for which your opponent has a

simple strategy for winning. If your opponent has read this chapter, you should

avoid capturing an edge piece with your center piece, for then Red can play a

rotational symmetry strategy. However, there are several losing responses from

either of the positions

or

and so these moves, while losing, are reasonable.
The Enough Rope Principle has other implications as well. If you are

confused about how best to play, do not simplify the position to the point

where your opponent will not be confused, especially if you are the better

player.

The converse applies as well. If you are winning, play moves that simplify.

Do not give you opponent opportunities to complicate the position, lest you be

hoist by your own petard.

Don’t give them any rope

This is contrary to the advice in the rest of the section. If you do not know

that you are losing the game and you are playing against someone of equal or

less game-playing ability, then a very good strategy is to move so as to restrict

the number of options that your opponent has and increase the number of your

own options. This is a heuristic that is often employed in first attempts to

produce programs that will play games reasonably well. This has been used in

amazons, connect-4, and othello.

1.5 Strategy Stealing

Strategy stealing is a technique whereby one player steals another player’s strat-

egy. Why would you want to steal a strategy? Let’s see . . . .

3At least one of the authors feels compelled to add, except if you are playing against a
small child.
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Two-move chess

Players play by the ordinary rules of chess, but each player plays two consecutive

regular chess moves on each turn (this example appears in [SA03]).

White, who moves first, can under perfect play win or draw. For if Black

had a winning strategy, White could steal it by playing a Knight out and then

back again. Black is now faced with making the initial foray on the board with

the roles of Black and White reversed.

Chomp

The usual starting position of a game of chomp consists of a rectangle with

one poison square in the lower-left corner:

A move in chomp is to choose a square and to remove it and all other squares

above or to the right of it. A game between players Alice and Bob might

progress as follows:

A→ B→ A→ B→ A→

And Bob loses for he must take the poison square.

Theorem 1.10. chomp, when played on a rectangular board larger than 1× 1,

is a win for the first player.

Proof: Suppose that the first player chomps only the upper-right square of the

board. If this move wins, then it is a first-player win. If, on the other hand,

this move loses, then the second player has a winning response of chomping all

squares above or to the right of some square, x. But move x was available to

the first player on move one, and it removes the upper-right square, so the first

player has move x as a winning first move.

This is a non-constructive proof in that the proof gives no information

about what the winning move is. The proof can be rephrased as a guru argu-

ment, echoing the chess wager of Section 1.2.

Bridg-it

The game of bridg-it is played on two offset grids of blue and red dots. Here

is a position after five moves (Blue played first):
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The players, Blue and Red, alternate drawing horizontal or vertical lines joining

adjacent dots of the player’s chosen color. Blue wins by connecting any dot in

the top row to any dot in the bottom row by a path. Red is trying to connect

the left side to the right side. In the following position, Blue has won, with a

path near the right side of the board:

Lemma 1.11. bridg-it cannot end in a draw.

Sketch of proof: The game is unaffected if we consider the top and bottom rows

of blue dots as connected. Suppose the game has ended, and neither player has

won. Let S be the set of nodes that Red can reach from the left side of the

board. Then, starting from the upper-left blue dot, Blue can go from the top

to the bottom edge by following the boundary of the set S. As an example, set

S consists of the red dots below, and the blue path following the boundary is

shown on the right:

All the edges connecting blue dots must be present, for otherwise set S could

be extended.

Theorem 1.12. The first player wins at bridg-it, where the starting board is

an n× (n+1) grid of red dots overlapping an (n+1)× n grid of blue dots.

Proof: Note that the board is symmetric when reflected about the main diag-

onal. If the second player has a winning strategy, the first player can adopt it.

In particular, before her first move, the first player pretends that some random
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invisible move x has been made by the opponent and then responds as the

second player would have. If the opponent’s nth move is move x, then the first

player pretends that the opponent actually played the nth move at some other

location x′. Continuing in this fashion, the first player has stolen the winning

second-player strategy, with the only difference that the opponent always has

one fewer lines on the board. This missing move can be no worse for the first

player, and so she will win.

There are explicit winning strategies for bridg-it, avoiding the need for a

non-constructive strategy-stealing argument. So, not only can you find out you

should win, but by utilizing a bit of elementary graph theory, you can also find

out how to win! See, for example, [BCG01, volume 3, pp. 744–746] or [Wes01,

pp. 73–74].

1.6 Change the Game!

Sometimes a game is just another game in disguise. In that case one view can

be more, or less, intuitive than the other.

Example 1.13. In 3-to-15, there are nine cards, face up, labeled with the

digits {1, 2, 3, . . . , 9}. Players take turns selecting one card from the remaining

cards. The first player who has three cards adding up to 15 wins.

This game should end in a draw. Surprisingly, this is simply tic tac toe

in disguise! To see this, construct a magic square where each row, column, and

diagonal add up to 15:

8 1 6

3 5 7

4 9 2

You can confirm that three numbers add up to 15 if and only if they are in the

same tic tac toe line. Thus, you can treat a play of 3-to-15 as play of tic

tac toe. Suppose that you are moving first. Choose your tic tac toe move,

note the number on the corresponding square, and select the corresponding

card. When your opponent replies by choosing another card, mark the tic tac

toe board appropriately, choose your tic tac toe response, and again take

the corresponding card. Proceed in this fashion until the game is over. So if

you can play tic tac toe, you can play 3-to-15 just as well.

Exercise 1.14. Play 3-to-15 against a friend. As you and your friend move,

mark the magic square tic tac toe board with Xs and Os to convince yourself

that the games really are the same.
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Example 1.15. counters is played with tokens on a 1 × n strip of squares.

Players can put down a counter on an empty square or move a counter leftward

to the next empty square. In the latter case all the counters that it jumps over

(if any) are removed. power 2 is a game whose position is a positive integer

n and a move is to subtract a power of 2 from n provided that the result is

non-negative.

These games are the same! For example, consider the position .

Change empty spaces to 1’s and counters to 0’s and the position is 01001, which

is the binary expansion for 9 (with a leading zero). The possible moves (and

their corresponding numbers) are

= 00001 = 1 = 9− 8,
= 00101 = 5 = 9− 4,
= 00111 = 7 = 9− 2, and
= 01000 = 8 = 9− 1.

Problem 10 of Chapter 7 asks you to solve power 2.

1.7 Case Study: Long Chains in Dots & Boxes

We already observed in Example 1.2 on page 12 that the first player to play on

a long chain in a dots & boxes game typically loses. In this section, we will

investigate how that can help a player win against any first grader.

First, consider a dual form of dots & boxes called strings & coins.

Here is a typical starting position:

A move in strings & coins consists of cutting a string. If a player severs the

last of the four strings attached to a coin, the player gets to pocket the coin

and must move again. This game is the same as dots & boxes but disguised:

a coin is a box, and cutting a string corresponds to drawing a line between two

boxes. For example, here is a dots & boxes position and its dual strings &

coins position:

A
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Drawing the dotted line in dots & boxes corresponds to cutting the dotted

string in strings & coins. We will investigate strings & coins positions,

since people tend to find that important properties of the positions (such as

long chains) are easier to visualize and identify in this game than in dots &

boxes.

Positions of the following form are termed loony:

ANY is loony except is not loony.

The hidden portion of the position (in the box marked ANY) can be any po-

sition except a single coin. The defining characteristic shared by all loony

positions is that the next player to move has a choice of whether or not to

make a double-dealing move. A loony move, denoted by a �, is any move to

a loony position. All loony moves are labeled in the following dots & boxes

and equivalent strings & coins positions:
�

A

� � �

�

�

�

� � �

�

�

To summarize, if Bob makes a loony move (a move to a loony position),

Alice may (or may not) reply with a double-dealing move. From there, Bob

might as well double-cross before moving elsewhere.

Double-dealing

Loony move move Double-cross

A A B A

B

(Bob must move again after the double-cross.)
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Theorem 1.16. Under optimal play from a loony position, the player to move

next can get at least half the remaining coins.

Proof: Suppose that player Alice is to move next from the loony position

ANY

Consider playing only on the hidden position in the box marked ANY (without

the two extra coins). Suppose that the player moving next from ANY can

guarantee pocketing n coins. In the full position, Alice has at least two choices:

• Pocket the two coins (making two cuts) and move on ANY, pocketing n

more coins for a total of n+ 2:

ANY

• Sacrifice the two coins, cutting off the pair in one move. Whether or not

the opponent chooses to pick up the two coins, he must move next on

ANY, and so the most he can pocket is n+ 2 coins:

ANY

Thus, Alice can collect n + 2 coins, or all but n + 2 coins. One of these two

numbers is at least half the total number of coins!

In practice, the player about to move often wins decisively, especially if

there are very long chains.

Hence, from most positions, a � move (i.e., a move to a � position) is a los-

ing move and might as well be illegal when making a first pass at understanding

a position.

A long chain consists of k ≥ 3 coins and exactly k+ 1 strings connected in

a line:

· · ·
Notice that any move on a long chain is �.

Exercise 1.17. Find the non-� move(s) on a (short) chain of length 2:
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Exercise 1.18. Here are two separate strings & coins positions. Alice is

about to play in each game:

(a) Both positions are loony. Explain why.

(b) In one of the positions, Alice should make a double-dealing move. Which

one? Why?

(c) Estimate the score of a well-played game from each of the two positions.

(Alice should be able to win either game.)

So, it is crucial to know whose move it is if only long chains remain, for in

such a position all moves are loony and Theorem 1.16 tells us that the player

about to move will likely lose. To this end, consider a position with only long

chains. We distinguish a move (drawing a line or cutting a string) from a turn,

which may consist of several moves.

Define

M− = number of moves played so far;
M+ = number of moves remaining to be played;
M = M+ +M− = possible moves from the start position;
T = number of turn transfers so far;
B− = number of boxes (or coins) taken already;
B+ = number of boxes (or coins) left to be taken;
B = B+ +B− = total number of boxes (or coins) in the start position;
C = number of long chains;
D = number of double-crosses so far.

Recall that double-crosses are single moves that take two coins in one cut (or

complete two boxes in one stroke):

We can compute the above quantities for the following position:

A
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M− = 14,
M+ = 10,
M = 24,
T = 13,
B− = 1,
B+ = 8,
B = 9,
C = 2,
D = 0.

(If there were two adjacent boxes taken by the same player, we would not know

if D = 0 or D = 1 without having watched the game in progress.)

We will now proceed to set up equations describing (as best we can) the

state of affairs when we are down to just long chains.

• Since every long chain has one more string than coin, we know that

M+ = C +B+.

• Since every move either completes a turn, completes a box, or completes

two boxes,

M− = T +B− −D.

Adding these equations, we conclude that

M = C + T +B −D.

Whose turn it is depends only on whether T is even or odd; M and B are

fixed at the start of the game, so whose turn it is is determined by the number

of long chains and the number of double crosses. We have all but proved the

following:

Theorem 1.19. If a strings & coins (or dots & boxes) position is reduced

to just long chains, player P can earn most of the remaining boxes, where

P ≡M + C +B +D (mod 2),

the first player to move is player P = 1, and her opponent is player P = 2 (or,

if you like, P = 0).

Proof: By the discussion preceding the theorem,

M = C + T +B −D.

If all that remains are long chains, whoever is on move (i.e., about to move)

must make a loony move, which by Theorem 1.16 guarantees that the last
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player can take at least half the remaining coins. If you are player 1, say, then

your opponent is on move if an odd number of turns have gone by since the

start of the game; i.e., T is odd. Note that T is odd if and only if M−C−B+D

is odd; i.e., if and only if P ≡M +C +B +D (mod 2). (Replace odd by even

for P = 2.)

In a particular game, viewed from a particular player’s perspective, P , M ,

and B are all constant, and D is nearly always 0 (until someone makes a loony

move.) So, the parity of T depends only on C, a quantity that depends on the

actual moves made by the players.

In summary, when you sit down to a game of dots & boxes, count

P +M +B,

where P is your player number. You seek to ensure that the parity of C, the

number of long chains, matches this quantity.4 That is, you want to arrange

that C ≡ P +M +B (mod 2). If you can play to make the parity of the long

chains come out in your favor, you will usually win.

An example is in order. Alice played first against Bob, and they reach the

following position with Alice to play:

At the start of the game, Alice computed P + M + B = 1 + 24 + 9, an even

quantity, and therefore knows that she wishes for an even number of long chains.

Having identified all loony moves, she knows that the chain going around the

upper and right sides will end in one long chain unless someone makes a loony

(losing) move. So, she hopes that the lower-left portion of the board ends in

a long chain. Two moves will guarantee that end, those marked below with

dashed lines:
�

� �

�

�

� �

�

� �

�

�

� �

Of the two moves, Alice prefers the horizontal move, since that lengthens the

chain; because she expects to win most of the long chains, longer chains favor

4In rectangular dots & boxes boards, the number of dots is 1 + M + B (mod 2), and
some players prefer to count the dots. This is the view taken in [Ber00].
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her. If Bob is a beginner, a typical game might proceed as

A→ B→ A→

B→ A→
A A A

B→
A A A

B

B

A→
A A A

A A B

A A B

with Alice winning 7 to 2.

A more sophisticated Bob might recognize that he has lost the game of

long chains and might try to finagle a win by playing loony moves earlier. This

has the advantage of giving Alice fewer points for her long chains. A sample

game between sophisticated players might go

A→ B→ A→ A

B→ A B

B

A→ A B

B

B→ A B

B B

A→
A A A

A B A

B B A

Not only does Bob lose by only 6 to 3, but Bob might win if Alice hastily takes

all three boxes in the first long chain!

Exercise 1.20. What is the final score if Alice takes all three boxes instead of

her first double-dealing move in the last game? Assume that both players play

their best thereafter.

Suppose that Alice fails to make a proper first move. Bob can then steal

control by sacrificing two boxes (without making a loony move), breaking up

the second long chain. For example, play might proceed as

A→ B→ A→ A A
B→ · · ·
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In this game, Alice should get the lower-left four boxes, but Bob will get the

entire upper-right chain, winning 5 to 4.

Lastly, note that nowhere in the discussion leading up to or in the proof

of Theorem 1.19 did we use any information about what the start position

was. Consequently, if you come into a game already in play, you can treat the

current position as the start position! In our example game between Alice and

Bob repeated below, since M , the number of moves available from this start

position, is fourteen and B, the number of boxes still available, is nine, the

player on move (who we dub player 1 from this start position) wants an even

number of long chains:

Warning: Not all games reach an endgame consisting of long chains. There

are other positions in which all moves are loony. See, for example, Problem 18.

These sorts of positions come up more often the larger the board size.

Enough Rope Principle revisited

In the following dots & boxes (or the equivalent strings & coins) posi-

tion, Bob has stumbled into Alice’s trap, and Alice is now playing a symmetry

strategy. Note that the upper-right box and the lower-left box are, in fact,

equivalent. If this is not obvious from the dots & boxes position, try look-

ing at the corresponding strings & coins position, where the upper-right

dangling string could extend toward the right without changing the position:

If Bob allows Alice to keep symmetry to the end of the game, Alice will succeed

in getting an odd number of long chains and win. So, Bob should make a loony

move now on the long chain, forcing Alice to choose between taking the whole

chain or making one box and a double-dealing move:
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A

A

A

or

A

B

B

While Theorem 1.16 guarantees that Alice can win from one of the two posi-

tions (Alice first takes one box and then uses the theorem to assure half the

remainder), the proof of the theorem gives no guidance about how to win.

If Alice chooses the first option, it is now her move on the rest of the board;

she cannot play symmetry. If, on the other hand, she chooses the second option,

Bob has gained a one-point advantage, which he may be able to parlay into

a win.

Problems

Note that a few problems require some familiarity with graph theory. In par-

ticular, Euler’s Formula, Theorem A.7 on page 263, will come in handy.

1. Consider the 2× n clobber position

( )n

=

n︷ ︸︸ ︷
· · ·

Show that if n is even then ( )n

is a second-player win. (By the way, the first player wins when n ≤ 13 is

odd and, we conjecture, for all n odd.)

2. Prove that Left to move can win in the col position

3. Suppose that two players play strings & coins with the additional rule

that a player, on her turn, can spend a coin to end her turn. The last

player to play wins. (Spending a coin means discarding a coin that she

has won earlier in the game.)

(a) Prove that the first player to take any coin wins.
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(b) Suppose that the players play on an m-coin by n-coin board with

the usual starting position. Prove that if m+ n is even, the second

player can guarantee a win.

(c) Prove that if m+ n is odd, the first player can guarantee a win.

4. Two players play the following game on a round tabletop of radius R.

Players take turns placing pennies (of unit radius) on the tabletop, but

no penny is allowed to touch another or to project beyond the edge of

the table. The first player who cannot legally play loses. Determine who

should win as a function of R.5

5. Who wins snort when played on a path of length n?

How about an m× n grid?

6. The game of add-to-15 is the same as 3-to-15 (page 20) except that the

first player to get any number of cards adding to 15 wins. Under perfect

play, is add-to-15 a first-player win, second-player win, or draw?

7. The following vertex-deletion game is played on a directed graph. A

player’s turn consists of removing any single vertex with even indegree

(and any edges into or out of that vertex). Determine the winner if the

start position is a directed tree, with all edges pointing toward the root.

8. Two players play a vertex-deletion game on an undirected graph. A turn

consists of removing exactly one vertex of even degree (and all edges

incident to it). Determine the winner.

9. A bunch of coins is dangling from the ceiling. The coins are tied to

one another and to the ceiling by strings as pictured below. Players

alternately cut strings, and a player whose cut causes any coins to drop

to the ground loses. If both players play well, who wins?

5The players are assumed to have perfect fine motor control!




